Introduction to Artificial Intelligence (AI) and AI-Related Concepts
Christopher R. Brigham
Search for other papers by Christopher R. Brigham in
Current site
Google Scholar
PubMed
Close
,
Waqas A. Buttar
Search for other papers by Waqas A. Buttar in
Current site
Google Scholar
PubMed
Close
,
Mark Bucksbaum
Search for other papers by Mark Bucksbaum in
Current site
Google Scholar
PubMed
Close
, and
James B. Talmage
Search for other papers by James B. Talmage in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Artificial intelligence (AI) is transforming health care and holds immense potential for various fields, including the medical field, but it also brings its share of concerns and issues. This article introduces AI and its core concepts, such as deep learning, machine learning, and large language models (LLMs). It also provides examples that were generated using ChatGPT to highlight the use of prompts and the limitations of LLMs in AI. AI is a powerful paradigm for scientific research, and it can and does reduce work effort and enhance results. However, is it the right tool for the selected task? In addition, no matter how powerful, AI is meant to complement humans and does not replace them.

Contributor Notes

In preparation for part of this article, OpenAI's chat generative pretrained transformer (ChatGPT) was accessed in September 2023 to research issues. The authors wrote the content. The accuracy of key concepts was assessed by peers and by ChatGPT-4 on October 6, 2023. ChatGPT-4 and Anthropic Claude 2 were used in September 2023 to produce the examples.

  • 1.

    Cascella M, Montomoli J, Bellini V, Bignami E. Evaluating the feasibility of ChatGPT in healthcare: an analysis of multiple clinical and research scenarios. J Med Syst. 2023;47(1):33.

    • Search Google Scholar
    • Export Citation
  • 2.

    Gates B. Foreword. In: The AI Revolution in Medicine: GPT-4 and Beyond. Academic Press; 2023.

  • 3.

    Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. 4th ed. Pearson; 2022.

  • 4.

    Buchanan BG, Shortliffe EH. Rule-Based Expert Systems: the MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley; 1984.

    • Search Google Scholar
    • Export Citation
  • 5.

    Poole DL, Mackworth AK. Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press; 2017.

  • 6.

    Schwab K. The Fourth Industrial Revolution. Currency; 2017.

  • 7.

    Amazon Web Services. What is IoT? (Internet of Things). Accessed October 14, 2023. https://aws.amazon.com/what-is/iot/.

  • 8.

    IBM. What is blockchain technology? Accessed October 14, 2023. https://www.ibm.com/topics/blockchain.

  • 9.

    Stackpole T. The Big Idea Series. What is Web3? Harvard Business Review. Accessed October 14, 2023. https://hbr.org/2022/05/what-is-web3.

    • Search Google Scholar
    • Export Citation
  • 10.

    Khera R, Butte AJ, Berkwits M, et al. AI in medicine: JAMA's focus on clinical outcomes, patient-centered care, quality, and equity. JAMA. 2023;330(9):818820. doi: 10.1001/jama.2023.15481.

    • Search Google Scholar
    • Export Citation
  • 11.

    Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230243.

    • Search Google Scholar
    • Export Citation
  • 12.

    Xu, YJ, Liu X, et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation (Camb). 2021;2(4)100179. Published 2021 Oct 28. doi: 10.1016/j.xinn.2021.100179.

    • Search Google Scholar
    • Export Citation
  • 13.

    Nilsson NJ. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers; 1998.

  • 14.

    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436444.

  • 15.

    Watters C, Lemanski MK. Universal skepticism of ChatGPT: a review of early literature on chat generative pre-trained transformer. Front Big Data. 2023;6:1224976. doi:10.3389/fdata.2023.1224976.

    • Search Google Scholar
    • Export Citation
  • 16.

    Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255260.

  • 17.

    Zhu X. Semi-supervised Learning Literature Survey. Computer Science, University of Wisconsin-Madison; 2005.

  • 18.

    Finlayson SG, Subbaswamy A, Singh K, et al. The clinician and dataset shift in artificial intelligence. N Engl J Med. 2021;385(3):283286. doi:10.1056/NEJMc2104626.

    • Search Google Scholar
    • Export Citation
  • 19.

    Tan C, Sun F, Kong T, et al. A survey on deep transfer learning. arXiv. 2018. Submitted August 6, 2018. Accessed October 10, 2023. doi:10.48550/arXiv.1808.01974.

    • Search Google Scholar
    • Export Citation
  • 20.

    Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv. 2020;53(3):134.

  • 21.

    Caruana R. Multitask learning. Mach Learn. 1997;28(1):4175.

  • 22.

    Koga S, Martin NB, Dickson DW. Evaluating the performance of large language models: ChatGPT and Google Bard in generating differential diagnoses in clinicopathological conferences of neurodegenerative disorders. Brain Pathol. 2023;e13207. doi:10.1111/bpa.13207.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hospedales T, Antoniou A, Micaelli P, Storkey A. Meta-learning in neural networks: a survey. arXiv. 2021. Submitted April 11, 2020. Accessed October 10, 2023. doi:10.48550/arXiv.2004.05439.

    • Search Google Scholar
    • Export Citation
  • 24.

    Sutton RS, Barto AG. Reinforcement Learning: An Introduction. 2nd ed. MIT Press; 2018.

  • 25.

    Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):2429. doi:10.1038/s41591-018-0316-z.

    • Search Google Scholar
    • Export Citation
  • 26.

    Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. http://www.deeplearningbook.org.

  • 27.

    Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks. 2015;61:85117.

  • 28.

    Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):23522449.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. arXiv. 2015. Submitted May 29, 2015. Accessed October 10, 2023. doi:10.48550/arXiv.1506.00019.

    • Search Google Scholar
    • Export Citation
  • 30.

    Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):17351780.

  • 31.

    Hunter DJ, Holmes C. Where medical statistics meets artificial intelligence. N Engl J Med. 2023;389(13):12111219. doi:10.1056/NEJMra2212850.

    • Search Google Scholar
    • Export Citation
  • 32.

    Vignesh R, Pradeep P, Balakrishnan P. A tête-à-tête with ChatGPT on the impact of artificial intelligence in medical education. Med J Malaysia. 2023;78(4):547549.

    • Search Google Scholar
    • Export Citation
  • 33.

    Donker T. The dangers of using large language models for peer review. Lancet Infect Dis. 2023;23(7):781. doi:10.1016/S1473-3099(23)00290-6.

    • Search Google Scholar
    • Export Citation
  • 34.

    Kim JK, Chua M, Rickard M, Lorenzo A. ChatGPT and large language model (LLM) chatbots: the current state of acceptability and a proposal for guidelines on utilization in academic medicine. J Pediatr Urol. 2023;19(5):598604. doi:10.1016/j.jpurol.2023.05.018.

    • Search Google Scholar
    • Export Citation
  • 35.

    Goodman RS, Patrinely JR, Stone CA Jr, et al. Accuracy and reliability of Chatbot responses to physician questions. JAMA Netw Open. 2023;6(10):e2336483. doi:10.1001/jamanetworkopen.2023.36483.

    • Search Google Scholar
    • Export Citation
  • 36.

    Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models. 2022. ArXiv. Submitted June 15, 2022. Accessed October 24, 2023. doi:10.48550/arXiv.2206.07682.

    • Search Google Scholar
    • Export Citation
  • 37.

    Will ChatGPT transform healthcare? Nat Med. 2023;29(3):505506. doi:10.1038/s41591-023-02289-5.

  • 38.

    Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719731. doi:10.1038/s41551-018-0305-z.

  • 39.

    Dave T, Athaluri SA, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front Artif Intell. 2023;6:1169595. doi:10.3389/frai.2023.1169595.

    • Search Google Scholar
    • Export Citation
  • 40.

    Winn Z. MIT News. “Study finds ChatGPT boosts worker productivity for some writing tasks.” July 14, 2023. Accessed October 20, 2023. https://news.mit.edu/2023/study-finds-chatgpt-boosts-worker-productivity-writing-0714.

    • Search Google Scholar
    • Export Citation
  • 41.

    Nelson H. HER Intelligence. “Artificial Intelligence (AI) Use Cases to Mitigate Clinician Burnout.” Accessed October 20, 2023. https://ehrintelligence.com/features/artificial-intelligence-ai-use-cases-to-mitigate-clinician-burnout.

    • Search Google Scholar
    • Export Citation
  • 42.

    Rao A, Pang M, Kim J, et al. Assessing the utility of ChatGPT throughout the entire clinical workflow: development and usability study. J Med Internet Res. 2023;25:e48659. doi:10.2196/48659.

    • Search Google Scholar
    • Export Citation
  • 43.

    Nori H, King N, McKinney SM, et al. Capabilities of GPT-4 on medical challenge problems. ArXiv. 2023. Submitted March 20, 2023. Accessed October 24, 2023. doi:10.48550/arXiv.2303.13375.

    • Search Google Scholar
    • Export Citation
  • 44.

    Bhayana R, Krishna S, Bleakney RR. Performance of ChatGPT on a radiology board-style examination: insights into current strengths and limitations. Radiology. 2023;307(5):e230582. doi:10.1148/radiol.230582.

    • Search Google Scholar
    • Export Citation
  • 45.

    Ayers JW, Poliak A, Dredze M, et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 2023;183(6):589596. doi:10.1001/jamainternmed.2023.1838.

    • Search Google Scholar
    • Export Citation
  • 46.

    Howard A, Hope W, Gerada A. ChatGPT and antimicrobial advice: the end of the consulting infection doctor? Lancet Infect Dis. 2023;23(4):405406. doi:10.1016/S1473-3099(23)00113-5.

    • Search Google Scholar
    • Export Citation
  • 47.

    Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944.

    • Search Google Scholar
    • Export Citation
  • 48.

    Athaluri SA, Manthena SV, Kesapragada VSRKM, et al. Exploring the boundaries of reality: investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references. Cureus. 2023;15(4):e37432. doi:10.7759/cureus.37432.

    • Search Google Scholar
    • Export Citation
  • 49.

    Al-Medfa MK, Al-Ansari AMS, Darwish AH, et al. Physicians' attitudes and knowledge toward artificial intelligence in medicine: benefits and drawbacks. Heliyon. 2023;9(4):e14744. doi:10.1016/j.heliyon.2023.e14744.

    • Search Google Scholar
    • Export Citation
  • 50.

    De Angelis L, Baglivo F, Arzilli G, et al. ChatGPT and the rise of large language models: the new AI-driven infodemic threat in public health. Front Public Health. 2023;11:1166120. doi:10.3389/fpubh.2023.1166120.

    • Search Google Scholar
    • Export Citation
  • 51.

    Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:6088.

  • 52.

    Choe J, Lee SM, Hwang HJ, et al. Artificial intelligence in lung imaging. Semin Respir Crit Care Med. 2022;43(6):946960. doi:10.1055/s-0042-1755571.

    • Search Google Scholar
    • Export Citation
  • 53.

    D'Angelo T, Caudo D, Blandino A, et al. Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: current applications. J Clin Ultrasound. 2022;50(9):14141431. doi:10.1002/jcu.23321.

    • Search Google Scholar
    • Export Citation
  • 54.

    Au Yeung J, Kraljevic Z, Luintel A, et al. AI chatbots not yet ready for clinical use. Front Digit Health. 2023;5:1161098. doi:10.3389/fdgth.2023.1161098.

    • Search Google Scholar
    • Export Citation
  • 55.

    Mesko B. The ChatGPT (generative artificial intelligence) revolution has made artificial intelligence approachable for medical professionals. J Med Internet Res. 2023;25:e48392. doi:10.2196/48392.

    • Search Google Scholar
    • Export Citation
  • 56.

    Ali SR, Dobbs TD, Hutchings HA, Whitaker IS. Using ChatGPT to write patient clinic letters. Lancet Digit Health. 2023;5(4):e179e181. doi:10.1016/S2589-7500(23)00048-1.

    • Search Google Scholar
    • Export Citation
  • 57.

    Laranjo L, Dunn AG, Tong HL, et al. Conversational agents in healthcare: a systematic review. J Am Med Inform Assoc. 2018;25(9):12481258.

    • Search Google Scholar
    • Export Citation
  • 58.

    M S, Murugappan A, T M. Cognitive computing technological trends and future research directions in healthcare: a systematic literature review. Artif Intell Med. 2023;138:102513. doi:10.1016/j.artmed.2023.102513.

    • Search Google Scholar
    • Export Citation
  • 59.

    Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):13171318.

  • 60.

    Wang H, Wu W, Dou Z, et al. Performance and exploration of ChatGPT in medical examination, records and education in Chinese: pave the way for medical AI. Int J Med Inform. 2023;177:105173. doi:10.1016/j.ijmedinf.2023.105173.

    • Search Google Scholar
    • Export Citation
  • 61.

    Hasselgren C, Oprea TI. Artificial intelligence for drug discovery: are we there yet? Annu Rev Pharmacol Toxicol. 2023. doi:10.1146/annurev-pharmtox-040323-040828.

    • Search Google Scholar
    • Export Citation
  • 62.

    Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. doi:10.3390/ijms24032026.

    • Search Google Scholar
    • Export Citation
  • 63.

    Ali MJ, Djalilian A. Readership Awareness Series – Paper 4: Chatbots and ChatGPT – ethical considerations in scientific publications. Semin Ophthalmol. 2023;38(5):403404. doi:10.1080/08820538.2023.2193444.

    • Search Google Scholar
    • Export Citation
  • 64.

    Alkaissi H, McFarlane SI. Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus. 2023;15(2):e35179. doi:10.7759/cureus.35179.

    • Search Google Scholar
    • Export Citation
  • 65.

    Benichou L; ChatGPT. The role of using ChatGPT AI in writing medical scientific articles. J Stomatol Oral Maxillofac Surg. 2023;124(5):101456. doi:10.1016/j.jormas.2023.101456.

    • Search Google Scholar
    • Export Citation
  • 66.

    Dergaa I, Chamari K, Zmijewski P, Ben Saad H. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biol Sport. 2023;40(2):615622. doi:10.5114/biolsport.2023.125623.

    • Search Google Scholar
    • Export Citation
  • 67.

    Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet. 2020;395(10236):15791586. doi:10.1016/S0140-6736(20)30226-9.

    • Search Google Scholar
    • Export Citation
  • 68.

    Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health. 2018;3(4):e000798. doi:10.1136/bmjgh-2018-000798.

    • Search Google Scholar
    • Export Citation
  • 69.

    NVIDIA. Large language models explained. Accessed November 7, 2023. https://www.nvidia.com/en-us/glossary/data-science/large-language-models/.

    • Search Google Scholar
    • Export Citation
  • 70.

    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Presentation at: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA. 2017.

    • Search Google Scholar
    • Export Citation
  • 71.

    Bommasani R, Hudson DA, Adeli E, et al. On the opportunities and risks of foundation models. arXiv. 2021. Submitted August 16, 2021. Accessed October 24, 2023. doi:10.48550/arXiv.2108.07258.

    • Search Google Scholar
    • Export Citation
  • 72.

    Strong E, DiGiammarino A, Weng Y, et al. Chatbot vs medical student performance on free-response clinical reasoning examinations. JAMA Intern Med. 2023;183(9):10281030. doi:10.1001/jamainternmed.2023.2909.

    • Search Google Scholar
    • Export Citation
  • 73.

    Huang J, Tan M. The role of ChatGPT in scientific communication: writing better scientific review articles. Am J Cancer Res. 2023;13(4):11481154.

    • Search Google Scholar
    • Export Citation
  • 74.

    Emsley R. ChatGPT: these are not hallucinations - they're fabrications and falsifications. Schizophrenia (Heidelb). 2023;9(1):52. doi:10.1038/s41537-023-00379-4.

    • Search Google Scholar
    • Export Citation
  • 75.

    Yoo JH. Let's look on the bright side of ChatGPT. J Korean Med Sci. 2023;38(27):e231. doi:10.3346/jkms.2023.38.e231.

  • 76.

    Thoppilan R, De Freitas D, Hall L, et al. LaMDA: Language Models for Dialog Applications. arXiv. 2022. Submitted January 20, 2022. Accessed October 24, 2023. doi:10.48550/arXiv.2201.08239.

    • Search Google Scholar
    • Export Citation
  • 77.

    Fatani B. ChatGPT for future medical and dental research. Cureus. 2023;15(4):e37285. doi:10.7759/cureus.37285.

  • 78.

    Harada Y, Katsukura S, Kawamura R, Shimizu T. Efficacy of artificial-intelligence-driven differential-diagnosis list on the diagnostic accuracy of physicians: an open-label randomized controlled study. Int J Environ Res Public Health. 2021;18(4):2086. doi:10.3390/ijerph18042086.

    • Search Google Scholar
    • Export Citation
  • 79.

    Hirosawa T, Harada Y, Yokose M, et al. Diagnostic accuracy of differential-diagnosis lists generated by generative pretrained transformer 3 chatbot for clinical vignettes with common chief complaints: a pilot study. Int J Environ Res Public Health. 2023;20(4):3378. doi:10.3390/ijerph20043378.

    • Search Google Scholar
    • Export Citation
  • 80.

    Babl FE, Babl MP. Generative artificial intelligence: can ChatGPT write a quality abstract? Emerg Med Australas. 2023;35(5):809811. doi:10.1111/1742-6723.14233.

    • Search Google Scholar
    • Export Citation
  • 81.

    Lee, KF; Chen, QF. AI 2041: ten visions for our future. Currency; NY, NY: 2021.

  • 82.

    DevIQ. Amara's law: a quick guide on technology predictions. Accessed November 8, 2023. https://deviq.com/laws/amaras-law.

All Time Past Year Past 30 Days
Abstract Views 446 446 390
Full Text Views 17 17 1
PDF Downloads 0 0 0
Save